INTRODUCTION

Proofs: Involving Segments

GEOMETRIC PROOF 1 GEOMETRIC PROOF 2

Proofs: Involving Angle Relationships
GEOMETRIC PROOF 3 GEOMETRIC PROOF 4
GEOMETRIC PROOF 5 GEOMETRIC PROOF 6
GEOMETRIC PROOF 7

Standard 1:

Students demonstrate understanding by identifying and giving examples of undefined terms, axioms, theorems, and inductive and deductive reasoning.

Standard 2:

Students write geometric proofs, including proofs by contradiction.

Standard 3:
Students construct and judge the validity of a logical argument and give counterexamples to disprove a statement.

Deductive Reasoning: Algebra

FORMAL

Two column proofs:
Given: $\mathbf{4}(\mathrm{x}+2)=\mathbf{2 x}+18$
Prove: $x=5$
Proof:

Statements	Reasons
(1) $4(x+2)=2 x+18$	(1) Given
(2) $4 x+8=2 x+18$	(2) Distributive prop.
(3) $4 x=2 x+10$	(3) Subtraction prop. (=)
(4) $2 x=10$	(4) Subtraction prop. (=)
(5) $x=5$	(5) Division Prop. (=)

INFORMAL

$$
\begin{gathered}
4(x+2)=2 x+18 \\
4 x+8=2 x+18 \\
-8 \quad-8 \\
4 x=2 x+10 \\
-2 x=-2 x \\
\frac{2 x}{2}=\frac{10}{2} \\
x=5
\end{gathered}
$$

Congruence in segments and angles is Reflexive, Symmetric and Transitive:

\cong of segments is reflexive.

$$
\overline{\mathrm{LM}} \cong \overline{\mathrm{LM}}
$$

$$
\begin{gathered}
\cong \text { of } \angle \mathrm{s} \text { is reflexive } \\
\angle \mathrm{ECA} \cong \angle \mathrm{ECA}
\end{gathered}
$$

\cong of segments is symmetric.

$$
\overline{\mathrm{KL}} \cong \overline{\mathrm{LM}} \quad \overline{\mathrm{LM}} \cong \overline{\mathrm{KL}}
$$

\cong of segments is transitive.

$$
\begin{gathered}
\overline{\mathrm{KL}} \cong \overline{\mathrm{LM}} \\
\overline{\mathrm{LM}} \cong \overline{\mathrm{AB}} \\
\overline{\mathrm{KL}} \cong \overline{\mathrm{AB}}
\end{gathered}
$$

\cong of $\angle \mathrm{s}$ is transitive
$\angle \mathrm{BCE} \cong \angle \mathrm{FGH}$ $\angle \mathrm{FGH} \cong \angle \mathrm{ECA}$ $\angle \mathrm{BCE} \cong \angle \mathrm{ECA}$

Given:

$\overline{\mathrm{EF}} \cong \overline{\mathrm{HG}}$ $\overline{\mathbf{H B}} \cong \overline{\mathrm{AF}}$

Prove:

$\overline{\mathbf{E A}} \cong \overline{\mathbf{B G}}$

Two Column Proof:
Statements
(1) $\overline{\mathrm{EF}} \cong \overline{\mathrm{HG}}$
(2) $\overline{\mathrm{EF}}=\mathrm{HG}$
(3) $\mathrm{EF}=\mathrm{EA}+\mathrm{AF}$ and $\mathrm{HG}=\mathrm{HB}+\mathrm{BG}$
(4) $\mathrm{EA}+\overline{\mathrm{FF}}=\mathrm{HS}+\mathrm{BG}$
(5) $\overline{\mathrm{HB}} \cong \overline{\mathrm{AF}}$
(6) $\mathrm{HB}=\mathrm{AF}$
(7) $\mathrm{EA}=\mathrm{BG}$
(8) $\overline{\mathrm{EA}} \cong \overline{\mathrm{BG}}$

Given:

L is midpoint of $\overline{K M}$
$\overline{\mathrm{LM}} \cong \overline{\mathrm{AB}}$

Two Column Proof:

| Statements | Reasons |
| :--- | :--- | :--- |
| (1) Lis midpoint of $\overline{\mathrm{KM}}$ | (1) Given |
| (2) $\overline{\mathrm{KL}} \cong \overline{\mathrm{LM}}$ | (2) Definition of Midpoint |
| (3) $\overline{\mathrm{LM}} \cong \overline{\mathrm{AB}}$ | (3) Given |
| (4) $\overline{\mathrm{KL}} \cong \overline{\mathrm{AB}}$ | (4) \cong of segments is transitive. |

Given:

$$
\angle 1 \cong \angle 3
$$

Prove:

Two Column Proof:

Statements	Reasons
(1) $\angle 1 \cong \angle 3$	(1) Given
(2) $\angle 1 \cong \angle 2$	(2) Vertical $\angle S$ are \cong
(3) $\angle 2 \cong \angle 3$	(3) \cong of $\angle \mathrm{s}$ is transitive
(4) $\angle 3 \cong \angle 4$	(4) Vertical $\angle S$ are \cong
(5) $\angle 2 \cong \angle 4$	(5) \cong of $\angle \mathrm{s}$ is transitive

Given:

$\angle E F D$ is right

Prove:

$\angle \mathrm{AFB}$ and $\angle \mathrm{CFB}$ are complementary.
Two Column Proof:

Statements	Reasons	
(1) $\angle \mathrm{EFD}$ is right	(1) Given	
(2) $\overleftrightarrow{\mathrm{EC}} \perp \mathrm{AD}$	(2)	
Definition of \perp lines		
(3) $\angle \mathrm{AFC}$ is right	(3) \perp lines form 4 right $\angle \mathrm{s}$	
(4) $\mathrm{m} \angle \mathrm{AFC}=90^{\circ}$	(4)	
Definition of right $\angle \mathrm{s}$		
(5) $\mathrm{m} \angle \mathrm{AFB}+\mathrm{m} \angle \mathrm{CFB}=\mathrm{m} \angle \mathrm{AFC}$	(5) \angle addition postulate	
(6) $\mathrm{m} \angle \mathrm{AFB}+\mathrm{m} \angle \mathrm{CFB}=90^{\circ}$	(6)	
Substitution prop. of (=)		
(7) $\angle \mathrm{AFB}$ and $\angle \mathrm{CFB}$ are	(7)Definition of complementary.	

Given:

$\overrightarrow{\mathrm{CE}}$ bisects $\angle \mathrm{BCA}$ $\angle \mathrm{FGH} \cong \angle \mathrm{ECA}$

> Prove:
> $2(\mathrm{~m} \angle \mathrm{FGH})+\mathrm{m} \angle \mathrm{BCD}=180^{\circ}$

Two Column Proof:

Statements	Reasons
(1) $\quad \overrightarrow{\mathrm{CE}}$ bisects $\angle \mathrm{BCA}$	(1) Given
(2) $\angle \mathrm{BCE} \cong \angle \mathrm{ECA}$	(2) Definition of \angle bisector
(3) $\mathrm{m} \angle \mathrm{BCE}=\mathrm{m} \angle \mathrm{ECA}$	(3) Definition of $\cong \angle \mathrm{s}$
(4) $\angle \mathrm{FGH} \cong \angle \mathrm{ECA}$	(4) Given
(5) $\mathrm{m} \angle \mathrm{FGH}=\mathrm{m} \angle \mathrm{ECA}$	(5) Definition of $\cong \angle \mathrm{s}$
(6) $\mathrm{m} \angle \mathrm{BCE}=\mathrm{m} \angle \mathrm{FGH}$	(6) \cong of $\angle \mathrm{s}$ is transitive
(7) $\mathrm{m} \angle \mathrm{ECA}+\mathrm{m} \angle \mathrm{BCE}+\mathrm{m} \angle \mathrm{BCD}=180^{\circ}$	(7) \angle addition postulate
(8) $\mathrm{m} \angle \mathrm{FGH}+\mathrm{m} \angle \mathrm{FGH}+\mathrm{m} \angle \mathrm{BCD}=180^{\circ}$	(8) Substitution prop. of (=)
(9) $2(\mathrm{~m} \angle \mathrm{FGH})+\mathrm{m} \angle \mathrm{BCD}=180^{\circ}$	(9) Adding like terms

Given:

$\angle F B D$ is right

Prove:

$\angle \mathrm{ABF}$ and $\angle \mathrm{CBD}$ are complementary.
Two Column Proof:

Statements	Reasons
(1) $\angle \mathrm{FBD}$ is right	(1) Given
(2) $\mathrm{m} \angle \mathrm{FBD}=90^{\circ}$	(2) Definition of right $\angle \mathrm{s}$
(3) $\mathrm{m} \angle \mathrm{ABF}+\mathrm{m} \angle \mathrm{FBD}+\mathrm{m} \angle \mathrm{CBD}=180^{\circ}$	(3) \angle addition postulate
(4) $\mathrm{m} \angle \mathrm{ABF}+90^{\circ}+\mathrm{m} \angle \mathrm{CBD}=180^{\circ}$	(4) Substitution prop. of (=)
(5) $\mathrm{m} \angle \mathrm{ABF}+\mathrm{m} \angle \mathrm{CBD}=90^{\circ}$	(5) Subtraction prop. of (=)
(6) $\angle \mathrm{ABF}$ and $\angle \mathrm{CBD}$ are complementary.	(6)Definition of complementary $\angle \mathrm{s}$

Given:
$\overleftrightarrow{\mathrm{AC}}$ and $\overleftrightarrow{\mathrm{DF}}$ are // $\overleftrightarrow{G E}$ is a transversal

Prove:

$\angle \mathrm{GBC}$ and $\angle \mathrm{FEH}$ are supplementary.
Two Column Proof:

(3) $\mathrm{m} \angle \mathrm{GBC}+\mathrm{m} \angle \mathrm{CBE}=\mathbf{1 8 0 ^ { \circ }}$
(4) $\angle \mathrm{CBE} \cong \angle \mathrm{FEH}$
(5) $\mathrm{m} \angle \mathrm{CBE}=\mathrm{m} \angle \mathrm{FEH}$
(6) $\mathrm{m} \angle \mathrm{GBC}+\mathrm{m} \angle \mathrm{FEH}=18 \mathbf{0}^{\circ}$
(7) $\angle \mathrm{GBC}$ and $\angle \mathrm{FEH}$ are supplementary.

Reasons
(1) Given
(2) Definition of linear pair
(3) \angle s in a linear pair are supplementary
(4) In // lines cut by a transversal CORRESPONDING $\angle \mathrm{s}$ are \cong
(5) Definition of $\cong \angle \mathrm{s}$
(6) Substitution prop. of (=)
(7) Definition of supplementary \angle s

