

INTRODUCTION

Proofs: Involving Segments

GEOMETRIC PROOF 1 GEOMETRIC PROOF 2

Proofs: Involving Angle Relationships

GEOMETRIC PROOF 3 GEOMETRIC PROOF 4

GEOMETRIC PROOF 5 GEOMETRIC PROOF 6

GEOMETRIC PROOF 7

Standard 1:

Students demonstrate understanding by identifying and giving examples of undefined terms, axioms, theorems, and inductive and deductive reasoning.

Standard 2:

Students write geometric proofs, including proofs by contradiction.

Standard 3:

Students construct and judge the validity of a logical argument and give counterexamples to disprove a statement.

Deductive Reasoning: Algebra STANDARDS 1		
UFORMA		INFORMAL
Two column proofs	:	
Given: $4(x + 2) = 2x + 2$	18	4(x+2) = 2x + 18
Prove: x = 5		4x + 8 = 2x + 18
Proof:		-8 -8 -8 $4x = 2x + 10$
Statements	Reasons	-2x - 2x
(1) $4(x+2) = 2x + 18$	(1) Given	$\frac{2x}{2} - \frac{10}{2}$
(2) $4x + 8 = 2x + 18$	(2) Distributive prop.	x = 5
(3) $4x = 2x + 10$	(3) Subtraction prop. (=)	
(4) $2x = 10$	(4) Subtraction prop. (=)	
(5) $x = 5$	(5) Division Prop. (=)	
		2

,2,3

 \cong of segments is *reflexive*.

 $\overline{LM} \cong \overline{LM}$

 \cong of segments is *symmetric*.

 $\overline{\mathrm{KL}} \cong \overline{\mathrm{LM}} \qquad \overline{\mathrm{LM}} \cong \overline{\mathrm{KL}}$

 \cong of segments is *transitive*.

 $\frac{\mathbf{KL} \cong \mathbf{LM}}{\mathbf{LM} \cong \mathbf{AB}}$ $\frac{\mathbf{KL} \cong \mathbf{AB}}{\mathbf{KL} \cong \mathbf{AB}}$

 \cong of \angle s is reflexive

∠ECA≅∠ECA

 \cong of \angle s is symmetric

∠BCE≅∠FGH ∠FGH≅∠BCE

 \cong of \angle s is transitive

 $\angle BCE \cong \angle FGH$ $\angle FGH \cong \angle ECA$ $\angle BCE \cong \angle ECA$

For all segments and angles, their measures comply with these same properties.

Two Column Proof:

S	Reasons
	(1) Given
	(2) Definition of \cong segments.
HG = HB + BG	(3) Segment Addition Postulate.
	(4) Substitution prop. of (=)
	(5) Given
	(6) Definition of \cong segments.
	(7) Subtraction prop. of (=)
	(8) Definition of \cong segments.

STANDARDS 1,2,3

Given:	K I M
L is midpoint of KM	
$\overline{\text{LM}} \cong \overline{\text{AB}}$	A B
Prove:	
$\overline{\mathrm{KL}}\cong \overline{\mathrm{AB}} \checkmark$	

	Statements	Reasons
(1)	L is midpoint of KM	(1) Given
(2)	$\overline{\mathrm{KL}}\cong\overline{\mathrm{LM}}$	(2) Definition of Midpoint
(3)	$\overline{LM} \cong \overline{AB}$	(3) Given
(4)	$\overline{\mathrm{KL}}\cong\overline{\mathrm{AB}}$	(4) \cong of segments is transitive.

Statements	Reasons
(1) ∠1≅∠3	(1) Given
$(2) \swarrow 1 \cong \measuredangle 2$	(2) Vertical ∠S are ≅
(3) ∠2≅∠3	(3) \cong of \angle s is <i>transitive</i>
(4) ∠3≅∠4	(4) Vertical ∠S are ≅
(5) ∠2≅∠4	(5) \cong of \angle s is transitive

Statements	Reasons
(1) ∠EFD is right	(1) Given
(2) $\overrightarrow{\text{EC}} \perp \overrightarrow{\text{AD}}$	(2) Definition of \perp lines
(3) ∠AFC is right	(3) \perp lines form 4 right \angle s
$(4) m \angle AFC = 90^{\circ}$	(4) Definition of right $\angle s$
(5) $m \angle AFB + m \angle CFB = m \angle AFC$	(5) ∠ addition postulate
(6) $m \angle AFB + m \angle CFB = 90^{\circ}$	(6) Substitution prop. of (=)
(7) ∠AFB and ∠CFB are complementary.	(7) Definition of complementary ∠s

Statements	Reasons
(1) \overrightarrow{CE} bisects $\angle BCA$	(1) Given
(2) $\angle BCE \cong \angle ECA$	(2) Definition of ∠ bisector
$(3) m \angle BCE = m \angle ECA$	(3) Definition of $\cong \angle s$
(4) ∠FGH≅∠ECA	(4) Given
(5) $m \angle FGH = m \angle ECA$	(5) Definition of $\cong \angle s$
(6) $m \angle BCE = m \angle FGH$	(6) \cong of \angle s is transitive
(7) $m \angle ECA + m \angle BCE + m \angle BCD = 180^{\circ}$	(7) ∠ addition postulate
(8) $m \angle FGH + m \angle FGH + m \angle BCD = 180^{\circ}$	(8) Substitution prop. of (=)
(9) $2(m \angle FGH) + m \angle BCD = 180^{\circ}$	(9) Adding like terms

Statements	Reasons
(1) ∠FBD is right	(1) Given
(2) m \angle FBD=90°	(2) Definition of right $\angle s$
(3) $m \angle ABF + m \angle FBD + m \angle CBD = 180^{\circ}$	(3) ∠ addition postulate
$(4) \mathbf{m} \angle \mathbf{ABF} + \mathbf{90^{\circ}} + \mathbf{m} \angle \mathbf{CBD} = \mathbf{180^{\circ}}$	(4) Substitution prop. of (=)
(5) $m \angle ABF + m \angle CBD = 90^{\circ}$	(5) Subtraction prop. of (=)
(6) \angle ABF and \angle CBD are complementary.	(6) Definition of complementary ∠s

11

Statements	Reasons
(1) \overrightarrow{AC} and \overrightarrow{DF} are <i>//</i> \overrightarrow{GE} is a transversal	(1) Given
(2) ∠GBC and ∠CBE are a linear pair	(2) Definition of linear pair
$(3) m \angle GBC + m \angle CBE = 180^{\circ}$	(3) \angle s in a linear pair are supplementary
$(4) \angle CBE \cong \angle FEH$	(4) In // lines cut by a transversal CORRESPONDING ∠s are ≅
(5) $m \angle CBE = m \angle FEH$	(5) Definition of $\cong \angle s$
(6) $m \angle GBC + m \angle FEH = 180^{\circ}$	(6) Substitution prop. of (=)
(7) ∠GBC and ∠FEH are supplementary.	(7) Definition of supplementary ∠s