Basic Polygon Definitions

Interior Angle Sum Theorem

PROBLEM 1a

PROBLEM 2a
PROBLEM 2b

Exterior Angle Sum Theorem

Standard 12:

Students find and use measures of sides, interior and exterior angles of triangles and polygons to classify figures and solve problems.

Estándar 12:

Los estudiantes encuentran y usan medidas de los lados, ángulos interiores y exteriores de triángulos y polígonos para clasificar figuras y resolver problemas.

These are examples of POLYGONS:

These are NOT POLYGONS:

What is the difference? Click to find out...

Definition of a POLYGON:

A polygon is closed figure formed by a finite number of coplanar segments such that
1.- the sides that have a common endpoint are noncollinear, and
2.- each side intersects exactly two other sides, but only at their endpoints.

CONVEX POLYGON:

Standard 12

None of the lines containing a side of the polygon contains a point inside the polygon.

NON-CONVEX POLYGON OR CONCAVE POLYGON:

One or more lines containing a side on the polygon, contain points inside the polygon.

How do we call a polygon with 10 sides? Click to find out...

Standard 12

Number of sides	Polygon
3	Triangle
4	Quadrilateral
5	Pentagon
6	Hexagon
7	Heptagon
$\mathbf{8}$	Octagon
9	Nonagon
10	Decagon
12	Dodecagon
\mathbf{N}	

What is a regular polygon? Click to find out...

Definition of Regular Polygon:

A regular polygon is a convex polygon with all sides congruent and all angles congruent.

What is the sum of the interior angles in the quadrilateral below?

We draw diagonal $\overline{\mathrm{AC}}$ then we have $\Delta \mathrm{ABC}$ and $\mathrm{AADC}_{\mathrm{A}}$ numbering all angles in $\triangle \mathrm{ABC}$ numbering all angles in $\triangle \mathrm{ADC}$

$$
m \angle 1+m \angle 2+m \angle 3=180^{\circ}
$$

then

D

C

$$
\mathrm{m} \angle 4+m \angle 5+m \angle 6=180^{\circ}
$$

Because the sum of the interior angles of a triangle is 180°
adding both equations

$$
m \angle 1+m \angle 2+m \angle 3+m \angle 4+m \angle 5+m \angle 6=180^{\circ}+180^{\circ}
$$

Rearrenging the terms

$$
\underbrace{m \angle 1+m \angle 6}_{m}+\underbrace{m \angle A}+\underbrace{m \angle 3 \angle B+m \angle 4}_{m}+\underbrace{m \angle 5}=180^{\circ}+180^{\circ}
$$

Could this be done for a Pentagon, an hexagon, etc.? Click to find out...

What would be the sum of the interior angles for all these polygons?

Standard 12

Can you see a pattern? How this relates to the number of sides?
(number of sides-2) $180^{\circ}=$ Sum of interior angles in the polygon

How can we define this? Click to find out...

Interior angle sum theorem

If a convex polygon has n sides and S is the sum of the measures of the interior angles, then:

$$
S=180^{\circ}(n-2)
$$

Find the sum of the measures of the interior angles of a convex octagon.

We know that a Octagon is a polygon with 8 sides, so $\mathrm{n}=8$
and

$$
S=180^{\circ}(n-2)
$$

Where $S=$ Sum of measures of interior angles

So:

$$
\begin{gathered}
S=180^{\circ}(8-2) \\
S=180^{\circ}(6) \\
S=1080^{\circ}
\end{gathered}
$$

Find the sum of the measures of the interior angles of a convex decagon.

We know that a Decagon is a polygon with 10 sides, so $\mathrm{n}=10$
and

$$
S=180^{\circ}(n-2)
$$

Where $S=$ Sum of measures of interior angles

So:

$$
\begin{gathered}
S=180^{\circ}(10-2) \\
S=180^{\circ}(8) \\
S=1440^{\circ}
\end{gathered}
$$

Find the measure of each angle:

So: $\quad 110^{\circ}+(2 X)^{\circ}+(8 X)^{\circ}+(10 X+8)^{\circ}+(6 X-4)^{\circ}+(8 X+6)^{\circ}=180^{\circ}(6-2)$

$$
2 X+8 X+10 X+6 X+8 X+110+8-4+6=180(4)
$$

Find the measure of each angle:
We know from the Interior Angle Sum Theorem that:

So: $\quad 100^{\circ}+(7 X)^{\circ}+(10 X)^{\circ}+(9 X-6)^{\circ}+(10 X+3)^{\circ}+(7 X-9)=180^{\circ}(6-2)$

$$
7 X+10 X+9 X+10 X+7 X+100-6+3-9=180(4)
$$

These are all the EXTERIOR ANGLES for the polygon at the right.

Angles \angle_{1} and \angle_{2} form a linear pair

$$
\mathrm{m} \angle 1+m \angle 2=180^{\circ}
$$

Each exterior angle is supplementry to its interior angle.

What is the sum of the exterior angles in a polygon if we know the sum of the interior angles? Click to find out

For each vertex we have a linear pair, so:
measure of EXTERIOR ANGLE + measure of INTERIOR ANGLE $=\mathbf{1 8 0}^{\circ}$ substracting measure of INTERIOR ANGLE from both sides:
measure of EXTERIOR ANGLE=180 ${ }^{\circ}$-measure of INTERIOR ANGLE

Multiplying both sides for $n=$ number of vertices:
n (measure of EXTERIOR ANGLE) $=\mathbf{n}\left(\mathbf{1 8 0}^{\circ}\right.$-measure of INTERIOR ANGLE) $\underbrace{n(m e a s u r e ~ o f ~ E X T E R I O R ~ A N G L E)}=n 180^{\circ}-n($ measure of INTERIOR ANGLE)

Exterior Angle Sum Theorem:

If a polygon is convex, then the sum of the measures of the exterior angles, one at each vertex, is 360°.

An exterior angle of a regular polygon is 45°. Find the number of sides.

From the Exterior Angle Sum Theorem, we know that the sum of the exterior angles is 360°, $\mathbf{s o}$:

$$
\frac{360^{\circ}}{45^{\circ}}=8
$$

$$
\text { So we have } 8 \text { vertices, and } 8 \text { Sides. }
$$

An exterior angle of a regular polygon is 72°. Find the number of sides.

From the Exterior Angle Sum Theorem, we know that the sum of the exterior angles is 360°, $\mathbf{s o}$:

$$
\frac{360^{\circ}}{72^{\circ}}=5
$$

$$
\text { So we have } 5 \text { vertices, and } 5 \text { Sides. }
$$

Find the number of sides in a regular polygon if the measure of each interior angle is 165°.

We know that in a vertex in the polygon, the interior angle forms a linear pair with the exterior angle. So:

$$
\begin{aligned}
& \text { measure of EXTERIOR ANGLE + measure of INTERIOR ANGLE }=180^{\circ} \\
& \text { substracting measure of INTERIOR ANGLE from both sides: } \\
& \text { measure of EXTERIOR ANGLE }
\end{aligned} \begin{aligned}
& \mathbf{1 8 0}^{\circ} \text {-measure of INTERIOR ANGLE } \\
& =180^{\circ}-165^{\circ} \\
& =15^{\circ}
\end{aligned}
$$

And from Exterior Angle Sum Theorem, the sum of all exterior angles is $\mathbf{3 6 0}^{\circ}$, so:

$$
\frac{360^{\circ}}{15^{\circ}}=24 \quad \text { There are } 24 \text { vertices and thus } \underline{24} \text { sides. }
$$

Find the number of sides in a regular polygon if the measure of each interior angle is 156°.

We know that in a vertex in the polygon, the interior angle forms a linear pair with the exterior angle. So:

$$
\begin{aligned}
& \text { measure of EXTERIOR ANGLE + measure of INTERIOR ANGLE }=\mathbf{1 8 0} \mathbf{0}^{\circ} \\
& \text { substracting measure of INTERIOR ANGLE from both sides: } \\
& \text { measure of EXTERIOR ANGLE } \\
& =180^{\circ} \text {-measure of INTERIOR ANGLE } \\
& \\
& = \\
& \\
& \\
& \\
& =180^{\circ}-\mathbf{- 1 5 6}^{\circ}
\end{aligned}
$$

And from Exterior Angle Sum Theorem, the sum of all exterior angles is $\mathbf{3 6 0}^{\circ}$, so:
$\frac{360^{\circ}}{24^{\circ}}=15 \quad$ There are 15 vertices and thus 15 sides.

Find the measures of each interior and each exterior angle of a regular 60 -gon?

First we know that in a regular n-gon all interior and exterior angles are congruent and the sum of exterior angles is 360°, so:
$\frac{360^{\circ}}{60 \text { vertices }}=$ measure of EXTERIOR ANGLE

$$
\frac{360^{\circ}}{60}=6^{\circ} \quad \text { So: measure of EXTERIOR ANGLE }=6^{\circ}
$$

And the interior and exterior angles form a linear pair, so:
measure of EXTERIOR ANGLE + measure of INTERIOR ANGLE $=\mathbf{1 8 0}^{\circ}$
substracting measure of EXTERIOR ANGLE from both sides:
measure of INTERIOR ANGLE $=180^{\circ}$-measure of EXTERIOR ANGLE

$$
=180^{\circ}-6^{\circ}
$$

Find the measures of each interior and each exterior angle of a regular 24-gon?

First we know that in a regular n-gon all interior and exterior angles are congruent and the sum of exterior angles is 360°, so:
$\frac{360^{\circ}}{24 \text { vertices }}=$ measure of EXTERIOR ANGLE

$$
\frac{360^{\circ}}{24}=15^{\circ} \quad \text { So: measure of EXTERIOR ANGLE }=15^{\circ}
$$

And the interior and exterior angles form a linear pair, so:
measure of EXTERIOR ANGLE + measure of INTERIOR ANGLE $=\mathbf{1 8 0}^{\circ}$
substracting measure of EXTERIOR ANGLE from both sides:
measure of INTERIOR ANGLE=180 ${ }^{\circ}$-measure of EXTERIOR ANGLE

$$
=180^{\circ}-15^{\circ}
$$

