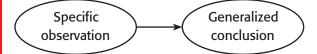
Section Overview


Lesson 2-1

Lessons 2-2, 2-3

Inductive Reasoning

Scientists use inductive reasoning when they form hypotheses to test by experiment.

Inductive reasoning is used to make *conjectures* and continue patterns.

A generalized conclusion is a **conjecture**. To disprove a conjecture, you need only one **counterexample**. By observing the triangles, you can make a conjecture about the pattern.

Conjecture: The color alternates between red and blue, and the triangle rotates 90° clockwise each time.

Based on the conjecture, the next triangle in the pattern is the following:

 $p \rightarrow q$

 $a \rightarrow b$

 $D \rightarrow \sim a$

Conditionals and Deductive Reasoning

Deductive reasoning is the basis for proof in mathematics. Lawyers use deductive reasoning when presenting cases in court.

Deductive reasoning is the process of using logic to draw conclusions.

A **conditional statement** is an if-then statement. It has a **hypothesis** and a **conclusion**.

If p, then q. $p \rightarrow q$

Law of Detachment If $p \rightarrow q$ is a true statement and p is true, then q is true. **Law of Syllogism** If $p \rightarrow q$ and $q \rightarrow r$ are true statements,

Contrapositive: $\sim q \rightarrow$

Conditional:

Converse:

Inverse:

then $p \rightarrow r$ is a true statement.

Biconditionals and Definitions

Lesson 2-4

Logically

equivalent

Definitions must be precise in order for people to communicate effectively.

A **biconditional statement** is an if-and-only-if statement. p if and only if q. $p \leftrightarrow q$ This means both $p \rightarrow q$ and $q \rightarrow p$.

Biconditionals are used to write precise **definitions**.