Section Overview

Determining the Slope of a Line

Why? Real-world situations that involve a rate of change, such the steepness of a road over a given distance, can be expressed as the ratio of rise over run.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{6}{-3}=-2
$$

You can also use the slope formula to determine the slope of a line.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{7-1}{1-4}=-2
\end{aligned}
$$

Classifying Lines as Parallel, Intersecting, or Coinciding

Why? Two real-world situations with the same rate of change, but different initial values, can be modeled by parallel lines.

Intersecting lines have
different slopes.

Parallel lines have the same slope but different y-intercepts.

Coinciding lines have the same slope and same y-intercepts.

Writing Equations of Lines

A linear relationship between two variables can be represented by an equation in point-slope form or slope-intercept form. The equation can then be used to analyze the relationship.

A line has a slope of 2 and a y-intercept of -5 , and contains the point $(3,1)$.

Point-Slope

Form of the Equation

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =2(x-3)
\end{aligned}
$$

Slope-Intercept Form of the Equation

$$
\begin{aligned}
& y=m x+b \\
& y=2 x-5
\end{aligned}
$$

