\qquad Date \qquad Class \qquad

LESSON

Reading Strategies

11-2 Use a Table

The table below shows some of the relationships among arcs, chords, and central angles.

Words	Diagram	Mathematical Symbols
A minor arc is equal to the measure of its central angle.		$m \widehat{D E}=m \angle D C E=x^{\circ}$
A major arc is equal to 360° minus the measure of its central angle.		$\begin{aligned} m \widehat{D F E} & =360^{\circ}-m \angle D C E \\ & =360^{\circ}-x^{\circ} \end{aligned}$
The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.		$m \widehat{A B C}=m \widehat{A B}+m \widehat{B C}$
Congruent central angles have congruent chords.		$\overline{R Q} \cong \overline{Y Z}$
Congruent chords have congruent arcs.		$\widehat{R Q} \cong \overline{Y Z}$
Congruent arcs have congruent central angles.		$\angle Q X R \cong \angle Z X Y$

Answer the following.

1. The measure of a central angle is 60°. What is the measure of its minor arc?
2. What will be the sum of a central angle's minor arc and major arc?
3. Congruent \qquad have congruent chords.

Use circle A to find each measure.

4. $m \overline{D E}$ \qquad 5. $m \overline{C B E}$ \qquad
5. $m \overline{E B D}$ \qquad 7. $m \overline{C B D}$ \qquad
6. $m \angle C A B$ \qquad 9. $m \overline{C D}$

Review for Mastery
11-2 Arcs and Chords continued
Congruent arcs are arcs that have the same measure.

Find each measure.

88°
8. $\angle H L G \cong \angle K L J$. Find $G H$.

21

Find each length to the nearest tenth.

10. $E F$

30.0

16.0

 ${ }^{\text {LEsson }}$: Problem Solving
 11-2 Arcs and Chords

1. Circle D has center $(-2,-7)$ and radius 7. What is the measure, in degrees, of the major arc that passes through points $H(-2,0), J(5,-7)$, and $K(-9,-7)$? 270°
2. A circle graph is composed of sectors with central angles that measure $3 x^{\circ}, 3 x^{\circ}$, $4 x^{\circ}$, and $5 x^{\circ}$. What is the measure, in degrees, of the smallest minor arcs?

$$
72^{\circ}
$$

Use the following information for Exercises 3 and 4.
The circle graph shows the results of a survey in which teens were asked what says the most about them at school. Find each of the following.

3. $\mathrm{m} \overparen{A B}$	
4. $\mathrm{m} \angle A P C$	154.8°
	115.2°

Choose the best answer.
5. Students were asked to name their favorite cafeteria food. The results of the survey are shown in the table. In a circle graph showing these results, which is closest to the measure of the central angle for the section representing chicken tenders?
$\begin{array}{ll}\text { A } 21^{\circ} & \text { C) } 83^{\circ} \\ \text { B } 75^{\circ} & \text { D } 270^{\circ}\end{array}$
6. The diameter of $\odot R$ is 15 units, and $H J=12$ units. What is the length of $\overline{S T}$?

F 2.1 units
(G) 3 units

H 4.5 units

Coopright © by Hollt. Rinemarat and Winston.
All light reserved.
17

Favorite Lunch	Number of Students
Pizza	108
Chicken tenders	75
Taco salad	90
Other	54

7. In the stained glass window, $\overline{A B} \cong \overline{C D}$ and $\overline{A B} \| \overline{C D}$. What is $m \overline{C B D}$?

A 35°
C 98°
(D) 262°

Challenge

$11-2$ Revisiting Chords of Circles

In the figure at right, the diameter of circle O is 28 centimeters. The chord $\overline{A B}$ intercepts an arc whose measure is 86°. From your previous study of circles, you know that you can find the length of the intercepted arc, $A B$. In Exercises 1-5, you will see how your knowledge of trigonometry makes it possible for you to also find the length of the chord.

Using the figure above, find each measure.

1. $\mathrm{m} \angle A O B$	86°	2. $\mathrm{m} \angle O A B$	47°
3. θ	43°	4. $O A$	14 cm
5. a. Using appropriate measures from Exercises 1-4, write a trigonometric equation that can be used to find $A D$. b. Solve your equation from part a. Round to the nearest tenth. c. What is the length of $\overline{A B}$?			$\sin 43^{\circ}=\frac{A D}{14}$
			$A D \approx 9.5 \mathrm{~cm}$
			$A B \approx 19.1 \mathrm{~cm}$

Find the length of a chord, $\overline{A B}$, that is in a circle of diameter d and that intercepts an arc, $\overline{A B}$, of the given degree measure. Round you answers to the nearest tenth.
6. $d=4$ inches, $\mathrm{m} \widehat{A B}=58^{\circ} \quad$ 7. $d=3$ meters, $\mathrm{m} \widehat{A B}=162^{\circ} \quad$ 8. $d=2 \frac{1}{2}$ feet, $\mathrm{m} \widehat{A B}=60^{\circ}$
$A B \approx 1.9 \mathrm{in} . \quad A B \approx 3.0 \mathrm{~m} \quad A B \approx 1.3 \mathrm{ft}$
9. Devise a formula that can be used to find the length, ℓ, of a chord in a circle of diameter d, given the degree measure, n, of its intercepted arc, where $0^{\circ}<n<180^{\circ}$.

In the figure at right, a regular pentagon is inscribed in a circle of
diameter 10 inches. Find each measure. Students' answers may vary slightly.
10. the length of one side of the pentagon $S \approx 5.9 \mathrm{in}$.
11. the perimeter of the pentagon $\quad P \approx 29.4 \mathrm{in}$.
12. the length of an apothem of $\quad a \approx 4.1 \mathrm{in}$.
the pentagon

14. Devise a formula that can be used to find the area, Formulas may vary in form. A, of a regular n-gon given the diameter, d, of $\quad A=\frac{1}{4} n d^{2}\left(\cos \left[\frac{180}{n}\right]^{\circ}\right)\left(\sin \left[\frac{180}{n}\right]^{\circ}\right)$
its circumscribed circle.
Copyrigte by Holt, Rinehart and Winston.
16
Holt Geometry

${ }^{\text {LIESSOM }}$ / Reading Strategies

11-2 Use a Table

The table below shows some of the relationships among arcs, chords, and central angles.

Words	Diagram	Mathematical Symbols
A minor arc is equal to the measure of its central angle.		$m \widehat{D E}=m \angle D C E=x^{\circ}$
A major arc is equal to 360° minus the measure of its central angle.		$\begin{aligned} m \widehat{D F E} & =360^{\circ}-m \angle D C E \\ & =360^{\circ}-x^{\circ} \end{aligned}$
The measure of an arc formed by two adjacent arcs is the sum of the measures of the two arcs.		$m \widehat{A B C}=m \widehat{A B}+m \widehat{B C}$
Congruent central angles have congruent chords.		$\overline{R Q} \cong \overline{Y Z}$
Congruent chords have congruent arcs.		$\widehat{R Q} \cong \overline{Y Z}$
Congruent arcs have congruent central angles.		$\angle Q X R \cong \angle Z X Y$

Answer the following

1. The measure of a central angle is 60°. What is the measure
of its minor arc?
-60°
2. $m \overline{C B E}-260^{\circ}$
3. $m \overline{C B D} \frac{295^{\circ}}{6}$
4. $m \overline{C D}-65^{\circ}$

Copyright © by Holt, Rineharat and Winston.
AAl
Althis resenved.
18
Holt Geometry
2. What will be the sum of a central angle's minor arc
and major arc?

