\qquad Date \qquad Class \qquad
Reading Strategies

11-6 Use a Model

The models below show segment relationships in circles.

Find the value of each variable.

1. \qquad

2. \qquad

3. \qquad

4. \qquad

5. \qquad

6.

Review for Mastery

11-6 Segment Relationships in Circles continued

- A secant segment is a segment of a secant with at least one endpoint on the circle.
- An external secant segment is the part of the secant segment that lies in the exterior of the circle.
- A tangent segment is a segment of a
$\overline{A E}$ is a secant
segment. tangent with one endpoint on the circle.
If two segments intersect outside a circle, the following theorems are true.

Secant-Secant Product Theorem

The product of the lengths of one secant segment and its external segment equals the product of the lengths of the other secant segment and its external segment. whole \cdot outside $=$ whole \cdot outside $A E \cdot B E=C E \cdot D E$
Secant-Tangent Product Theorem
The product of the lengths of the secant segment and its external segment equals the length of the tangen segment squared.
whole \cdot outside $=$ tangent 2
$A E \cdot B E=D E^{2}$

Find the value of the variable and the length of each secant segment.

6.

$z=12.25 ; T V=20.25 ; W V=18$
8.

7.5

Choose the best answer.

Challenge

11-6 Finding the Distance to the Horizon

For an observer at a point O above Earth, the horizon is the place where Earth appears to "meet the sky." The higher above Earth's surface the observer is, the farther away the horizon appears to be. It may surprise you to learn that you can calculate this distance to the horizon by applying your knowledge of tangents and secants.

Refer to the diagram of Earth at right.

1. Name the segment that represents each measure,

a. the diameter of Earth	b. the observer's altitude above Earth's surface $\overline{O S}$

c. the distance the observer can see to the horizon $\overline{O H}$
2. Justify the following equation: $(\mathrm{OH})^{2}=\mathrm{OR} \cdot \mathrm{OS}$ $\overline{O H}$ is a tangent segment of circle $C, \overline{O R}$ is a secant segment, and $\overline{O S}$ is its external secant segment. $\mathrm{SO}_{\mathrm{O}}(\mathrm{OH})^{2}=O R \cdot O S$.
When the observer's altitude above Earth's surface is small relative to the diameter of Earth, you can replace OR with RS in the equation $(O H)^{2}=O R \cdot O S$ from Exercise 2. Then, since the diameter of Earth is approximately $\quad(\mathrm{OH})^{2} \approx R S \cdot O S$ 7920 miles, you obtain the formula for OH shown at right. In this $\quad(\mathrm{OH})^{2} \approx 7920 \cdot \mathrm{OS}$ formula, the unit for both $O H$ and $O S$ is miles. $O H \approx \sqrt{7920 . O}$

Use the formula above to find the distance to the horizon for each altitude. Assume that it is a clear day and that the view is not
obstructed. Round answers to the nearest tenth of a mile.
3. 2.5 miles
140.7 mi
4. 30,000 feet
212.1 mi
5. Rewrite the formula above so that you can input $O S$ as a number of feet and find the
distance to the horizon in miles.
$\left(\right.$ Hint: OH miles $\left.=\sqrt{7920 \text { miles } \cdot \frac{1 \text { mile }}{\text { ? feet }} \cdot \text { OS feet }}\right)$

$$
O H \approx \sqrt{1.5 \cdot O S}
$$

Use your formula from Exercise 5 to find the distance to the horizon for each altitude. Assume that it is a clear day and that the view is not obstructed. Round answers to the nearest tenth of a mile.
6. 10 feet 3.9 mi
7. 200 feet \qquad

Find the altitude above Earth's surface that an observer must attain in order to see the given distance to the horizon. Round answers to the nearest tenth.
8. 1 mile 0.7 ft , or about 8 in . 9.300 miles $\quad 11.4 \mathrm{mi}$
\qquad 48
Holt Geometry

LEssom Reading Strategies

11-6 Use a Model

The models below show segment relationships in circles.

Find the value of each variable.

16
 Holt Geometry

